Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Viruses ; 15(4)2023 03 25.
Article in English | MEDLINE | ID: covidwho-2295200

ABSTRACT

Vaccine efficacy against SARS-CoV-2 could be compromised by the emergence of SARS-CoV-2 variants and it is important to study how it impacts the booster vaccination regime. We investigated the humoral and T cell responses longitudinally in vaccinated uninfected (n = 25) and post-COVID-19 individuals (n = 8), and those who had received a BNT162b2 booster following complete two-doses regimes of either BNT162b2 (homologous) (n = 14) or ChAdOx1-S (heterologous) (n = 15) vaccines, by means of a SARS-CoV-2 pseudovirus neutralization test and QuantiFERON SARS-CoV-2 assay. Vaccinated post-COVID-19 individuals showed higher neutralizing antibodies with longer durability against SARS-CoV-2 wild type (WT) and Omicron spikes, but demonstrated similar declining T cell responses compared to the uninfected vaccinated. Two doses of BNT162b2 induced higher neutralizing antibodies against WT and T cell responses than ChAdOx1-S for six months. The BNT162b2 booster confers a greater humoral response against WT, but a similar cross-neutralizing antibody against Omicron and T cell responses in the homologous booster group compared to the heterologous booster group. Breakthrough infection in the homologous booster group (n = 11) significantly increased the neutralizing antibody, but T cell responses remained low. Our data may impact government public health policy regarding the administration of mix-and-match vaccines, where both vaccination regimes can be employed should there be shortages of certain vaccines.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Longitudinal Studies , SARS-CoV-2 , Breakthrough Infections , Malaysia , COVID-19/prevention & control , T-Lymphocytes , Cohort Studies , Antibodies, Neutralizing , ChAdOx1 nCoV-19 , Vaccination , Antibodies, Viral
2.
Int J Infect Dis ; 125: 216-226, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2095477

ABSTRACT

OBJECTIVES: This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program. METHODS: COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database. RESULTS: From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country. CONCLUSION: The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness.

3.
ISME communications ; 2(1), 2022.
Article in English | EuropePMC | ID: covidwho-2092664

ABSTRACT

The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them—the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.

5.
PLoS One ; 17(9): e0273697, 2022.
Article in English | MEDLINE | ID: covidwho-2065114

ABSTRACT

BACKGROUND: Severe acute respiratory infections (SARI) pose a great global burden. The contribution of respiratory viruses to adult SARI is relatively understudied in Asia. We aimed to determine viral aetiology of adult SARI patients in Kuala Lumpur, Malaysia. METHODS: The prevalence of 20 common (mainly viral) respiratory pathogens, and MERS-CoV, SARS-CoV and 5 bacterial select agents was investigated from May 2017 to October 2019 in 489 SARI adult patients in Kuala Lumpur, Malaysia, using molecular assays (Luminex NxTAG-RPP kit and qPCR assays). Viral metagenomics analysis was performed on 105 negative samples. RESULTS: Viral respiratory pathogens were detected by PCR in 279 cases (57.1%), including 10 (2.0%) additional detections by metagenomics analysis. The most detected viruses were rhinovirus/enterovirus (RV/EV) (49.1%) and influenza virus (7.4%). Three melioidosis cases were detected but no SARS-CoV, MERS-CoV or other bacterial select agents. Bacterial/viral co-detections and viral co-detections were found in 44 (9.0%) and 27 (5.5%) cases respectively, mostly involving RV/EV. Independent predictors of critical disease were male gender, chronic lung disease, lack of runny nose and positive blood culture with a significant bacterial pathogen. Asthma and sore throat were associated with increased risk of RV/EV detection, while among RV/EV cases, males and those with neurological disease were at increased risk of critical disease. CONCLUSIONS: Prior to the COVID-19 pandemic, the high prevalence of respiratory viruses in adults with SARI was mainly attributed to RV/EV. Continued surveillance of respiratory virus trends contributes to effective diagnostic, prevention, and treatment strategies.


Subject(s)
COVID-19 , Enterovirus , Respiratory Tract Infections , Viruses , Adult , COVID-19/epidemiology , Enterovirus/genetics , Female , Humans , Malaysia/epidemiology , Male , Pandemics , Real-Time Polymerase Chain Reaction , Rhinovirus/genetics , Viruses/genetics
6.
J Med Virol ; 94(3): 1146-1153, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718381

ABSTRACT

Malaysia has experienced three waves of coronavirus disease 2019 (COVID-19) as of March 31, 2021. We studied the associated molecular epidemiology and SARS-CoV-2 seroprevalence during the third wave. We obtained 60 whole-genome SARS-CoV-2 sequences between October 2020 and January 2021 in Kuala Lumpur/Selangor and analyzed 989 available Malaysian sequences. We tested 653 residual serum samples collected between December 2020 to April 2021 for anti-SARS-CoV-2 total antibodies, as a proxy for population immunity. The first wave (January 2020) comprised sporadic imported cases from China of early Pango lineages A and B. The second wave (March-June 2020) was associated with lineage B.6. The ongoing third wave (from September 2020) was propagated by a state election in Sabah. It is due to lineage B.1.524 viruses containing spike mutations D614G and A701V. Lineages B.1.459, B.1.470, and B.1.466.2 were likely imported from the region and confined to Sarawak state. Direct age-standardized seroprevalence in Kuala Lumpur/Selangor was 3.0%. The second and third waves were driven by super-spreading events and different circulating lineages. Malaysia is highly susceptible to further waves, especially as alpha (B.1.1.7) and beta (B.1.351) variants of concern were first detected in December 2020/January 2021. Increased genomic surveillance is critical.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral/genetics , COVID-19/epidemiology , Humans , Malaysia/epidemiology , Phylogeny , SARS-CoV-2/genetics , Seroepidemiologic Studies
7.
J Virol Methods ; 301: 114462, 2022 03.
Article in English | MEDLINE | ID: covidwho-1693167

ABSTRACT

Emerging SARS-CoV-2 variants of concern (VOC) have been associated with enhanced transmissibility and immune escape. Next-generation sequencing (NGS) of the whole genome is the gold standard for variant identification for surveillance but is time-consuming and costly. Rapid and cost-effective assays that detect SARS-CoV-2 variants are needed. We evaluated Allplex SARS-CoV-2 Master Assay and Variants I Assay to detect HV69/70 deletion, Y144 deletion, E484K, N501Y, and P681H spike mutations in 248 positive samples collected in Kuala Lumpur, Malaysia, between January and May 2021. Spike variants were detected in 78/248 (31.5 %), comprising 60 VOC B.1.351 (beta) and 18 B.1.1.7 (alpha). With NGS as reference for 115 samples, the sensitivity for detecting the spike mutations was 98.7 % with the Master Assay and 100 % with the Variants I Assay. The emergence of beta variants correlated with increasing COVID-19 infections in Malaysia. The prevalence of alpha VOC and lineage B.1.466.2 was low. These assays detect mutations present in alpha, beta and gamma VOCs. Of the VOCs which have subsequently emerged, the assays should detect omicron (B.1.1.529) but not B.1.617.2 (delta). In conclusion, spike variant PCR assays can be used to rapidly monitor selected SARS-CoV-2 VOCs in resource-limited settings, but require updates as new variants emerge.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Malaysia , Multiplex Polymerase Chain Reaction , Mutation , Reverse Transcriptase Polymerase Chain Reaction
8.
BMC Infect Dis ; 21(1): 1238, 2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1566508

ABSTRACT

BACKGROUND: Hospitals are vulnerable to COVID-19 outbreaks. Intrahospital transmission of the disease is a threat to the healthcare systems as it increases morbidity and mortality among patients. It is imperative to deepen our understanding of transmission events in hospital-associated cases of COVID-19 for timely implementation of infection prevention and control measures in the hospital in avoiding future outbreaks. We examined the use of epidemiological case investigation combined with whole genome sequencing of cases to investigate and manage a hospital-associated cluster of COVID-19 cases. METHODS: An epidemiological investigation was conducted in a University Hospital in Malaysia from 23 March to 22 April 2020. Contact tracing, risk assessment, testing, symptom surveillance, and outbreak management were conducted following the diagnosis of a healthcare worker with SARS-CoV-2 by real-time PCR. These findings were complemented by whole genome sequencing analysis of a subset of positive cases. RESULTS: The index case was symptomatic but did not fulfill the initial epidemiological criteria for routine screening. Contact tracing suggested epidemiological linkages of 38 cases with COVID-19. Phylogenetic analysis excluded four of these cases. This cluster included 34 cases comprising ten healthcare worker-cases, nine patient-cases, and 15 community-cases. The epidemic curve demonstrated initial intrahospital transmission that propagated into the community. The estimated median incubation period was 4.7 days (95% CI: 3.5-6.4), and the serial interval was 5.3 days (95% CI: 4.3-6.5). CONCLUSION: The study demonstrated the contribution of integrating epidemiological investigation and whole genome sequencing in understanding disease transmission in the hospital setting. Contact tracing, risk assessment, testing, and symptom surveillance remain imperative in resource-limited settings to identify and isolate cases, thereby controlling COVID-19 outbreaks. The use of whole genome sequencing complements field investigation findings in clarifying transmission networks. The safety of a hospital population during this COVID-19 pandemic may be secured with a multidisciplinary approach, good infection control measures, effective preparedness and response plan, and individual-level compliance among the hospital population.


Subject(s)
COVID-19 , Disease Outbreaks , Hospitals, University , Humans , Malaysia/epidemiology , Pandemics , Phylogeny , SARS-CoV-2
9.
J Clin Virol ; 145: 105000, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472031

ABSTRACT

BACKGROUND: Reports of co-circulation of respiratory viruses during the COVID-19 pandemic and co-infections with SARS-CoV-2 vary. However, limited information is available from developing countries. OBJECTIVES: We aimed to investigate the incidence of respiratory viruses in adult patients with suspected COVID-19 in Kuala Lumpur, Malaysia. STUDY DESIGN: We collected 198 respiratory samples from adult patients hospitalized with suspected COVID-19 in a single teaching hospital in Kuala Lumpur in February-May 2020 and tested combined oro-nasopharyngeal swabs with the NxTAG Respiratory Pathogen Panel (Luminex) and Allplex RV Essential (Seegene) assays. Forty-five negative samples further underwent viral metagenomics analysis. RESULTS: Of the 198 samples, 74 (37.4%) had respiratory pathogens, including 56 (28.3%) with SARS-CoV-2 and 18 (9.1%) positive for other respiratory pathogens. There were five (2.5%) SARS-CoV-2 co-infections, all with rhinovirus/enterovirus. Three samples (6.7%; 3/45) had viruses identified by metagenomics, including one case of enterovirus D68 and one of Saffold virus genotype 6 in a patient requiring ICU care. Most of the COVID-19 patients (91.1%; 51/56) had mild symptoms but 5.4% (3/56) died. CONCLUSION: During the early COVID-19 period, common respiratory viruses other than SARS-CoV-2 only accounted for 9.1% of hospitalization cases with ARI and co-infections with SARS-CoV-2 were rare. Continued surveillance is important to understand the impact of COVID-19 and its associated public health control measures on circulation of other respiratory viruses. Metagenomics can identify unexpected or rare pathogens, such as Saffold virus, which is rarely described in adults.


Subject(s)
COVID-19 , Viruses , Adult , Humans , Malaysia/epidemiology , Pandemics , SARS-CoV-2 , Viruses/genetics
10.
Lancet Reg Health West Pac ; 9: 100123, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1142118

ABSTRACT

BACKGROUND: Asymptomatic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections are well documented. Healthcare workers (HCW) are at increased risk of infection due to occupational exposure to infected patients. We aim to determine the prevalence of SARS-CoV-2 antibodies among HCW who did not come to medical attention. METHODS: We prospectively recruited 400 HCW from the National Public Health Laboratory and two COVID-19 designated public hospitals in Klang Valley, Malaysia between 13/4/2020 and 12/5/2020. Quota sampling was used to ensure representativeness of HCW involved in direct and indirect patient care. All participants answered a self-administered questionnaire and blood samples were taken to test for SARS-CoV-2 antibodies by surrogate virus neutralization test. FINDINGS: The study population comprised 154 (38.5%) nurses, 103 (25.8%) medical doctors, 47 (11.8%) laboratory technologists and others (23.9%). A majority (68.9%) reported exposure to SARS-CoV-2 in the past month within their respective workplaces. Adherence to personal protection equipment (PPE) guidelines and hand hygiene were good, ranging from 91-100% compliance. None (95% CI: 0, 0.0095) of the participants had SARS-CoV-2 antibodies detected, despite 182 (45.5%) reporting some symptoms one month prior to study recruitment. One hundred and fifteen (29%) of participants claimed to have had contact with known COVID-19 persons outside of their workplace. INTERPRETATION: Zero seroprevalence among HCW suggests a low incidence of undiagnosed COVID-19 infection in our healthcare setting during the first local wave of SARS-CoV-2 infection. The occupational risk of SARS-CoV-2 transmission within healthcare facilities can be prevented by adherence to infection control measures and appropriate use of PPE.

11.
PLoS Negl Trop Dis ; 14(11): e0008744, 2020 11.
Article in English | MEDLINE | ID: covidwho-950826

ABSTRACT

Malaysia had 10,219 confirmed cases of COVID-19 as of September 20, 2020. About 33% were associated with a Tablighi Jamaat religious mass gathering held in Kuala Lumpur between February 27 and March 3, 2020, which drove community transmission during Malaysia's second wave. We analysed genome sequences of SARS-CoV-2 from Malaysia to better understand the molecular epidemiology and spread. We obtained 58 SARS-CoV-2 whole genome sequences from patients in Kuala Lumpur and performed phylogenetic analyses on these and a further 57 Malaysian sequences available in the GISAID database. Nine different SARS-CoV-2 lineages (A, B, B.1, B.1.1, B.1.1.1, B.1.36, B.2, B.3 and B.6) were detected in Malaysia. The B.6 lineage was first reported a week after the Tablighi mass gathering and became predominant (65.2%) despite being relatively rare (1.4%) globally. Direct epidemiological links between lineage B.6 viruses and the mass gathering were identified. Increases in reported total cases, Tablighi-associated cases, and community-acquired B.6 lineage strains were temporally linked. Non-B.6 lineages were mainly travel-associated and showed limited onward transmission. There were also temporally correlated increases in B.6 sequences in other Southeast Asian countries, India and Australia, linked to participants returning from this event. Over 95% of global B.6 sequences originated from Asia Pacific. We also report a nsp3-C6310A substitution found in 47.3% of global B.6 sequences which was associated with reduced sensitivity using a commercial diagnostic real-time PCR assay. Lineage B.6 became the predominant cause of community transmission in Malaysia after likely introduction during a religious mass gathering. This event also contributed to spikes of lineage B.6 in other countries in the Asia-Pacific. Mass gatherings can be significant causes of local and global spread of COVID-19. Shared genomic surveillance can be used to identify SARS-CoV-2 transmission chains to aid prevention and control, and to monitor diagnostic molecular assays. Clinical Trial Registration: COVID-19 paper.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/classification , COVID-19/transmission , Computational Biology , Genetic Variation , Humans , Malaysia/epidemiology , Multiplex Polymerase Chain Reaction , Mutation , Nasopharynx/virology , Oropharynx/virology , Phylogeny , RNA, Viral/chemistry , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Time Factors , Whole Genome Sequencing
13.
J Microbiol Biotechnol ; 30(7): 962-966, 2020 Jul 28.
Article in English | MEDLINE | ID: covidwho-634291

ABSTRACT

Monitoring the mutation dynamics of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in understanding its infectivity, virulence and pathogenicity for development of a vaccine. In an "age of mobility," the pandemic highlights the importance and vulnerability of regionalization and labor market interdependence in Southeast Asia. We intend to characterize the genetic variability of viral populations within the region to provide preliminary information for regional surveillance in the future. By analyzing 142 complete genomes from South East Asian (SEA) countries, we identified three central variants distinguished by nucleotide and amino acid changes.


Subject(s)
Betacoronavirus/genetics , Mutation , Asia, Southeastern , Betacoronavirus/classification , Genetic Variation , Genome, Viral , Humans , Phylogeny , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL